
ASYMMETRIC HYDROGENATION BY A RHODIUM CATALYST COMPLEXED WITH A PHOSPHINITE DERIVED FROM CELLULOSE

Yasuziro KAWABATA, Masato TANAKA, and Ikuei OGATA National Chemical laboratory for Industry, Honmachi, Shibuya-ku, Tokyo 151

High optical yields up to ca. 77% were obtained in the hydrogenation of 2-phenyl-1-butene by use of a rhodium catalyst complexed with an insoluble phosphinite derived from 6-0-triphenylmethylcellulose. Recycling of the catalyst was also investigated.

Immobilized complex catalysts have received considerable recent attention in the field of organometallic catalysts, ¹⁾ and highly enantioselective hydrogenation has been accomplished in the presence of various types of chiral ligands. However, there are only a few reports²⁾ of immobilized chiral complex catalysts, where the optical yields attained are much poorer in comparison with those by homogeneous ones.

Previously, we reported that the chiral diphosphinite (<u>I</u>) is an excellent ligand for rhodium catalyzed asymmetric hydrogenation. This result has stimulated the preparation of a chiral phosphinite linked to cellulose which is readily available in optically pure state, because the oxacyclohexane ring is conformationally more rigid than the cyclohexane ring of <u>I</u>.

formation was incomplete. However, all attempts to prepare a phosphinite of higher phosphorus content were unsuccessful. Nevertheless, the phosphinite III with low phosphorus content brought about higher stereoselectivity than I when used in rhodium catalyzed hydrogenation of 2-pheny1-1-butene, as described below.

The catalyst was prepared by mixing a calcd. amount of [Rh(1,5-hexadiene)Cl]₂ and III in benzene in a 50 ml stainless steel reactor with a TEFLON-

coated magnetic rotor. After stirring the mixture under nitrogen to promote the rhodium-III complexation, 2-phenyl-1-butene, hydrogen, and also ethanol in some cases were introduced into the reactor, which was then heated at the temperatures shown in the table. After a given period, the reaction

Run	P/Rh ^{b)}	Comple Temp.(°C	exation C) Time(day)	Reac Temp.(°0	tion C) Time(day)	Conversion (%)	Optical yield(%)c)
1	2.3	50	5	50	4	67.9	4.3 ± 0.1
2	11.5	50	5	50	8	10.7	57.6 ± 1.1
3	23	50	5	50	20	16.8	51.8 ± 2.6
4	d)	-	-	50	13	36.0	40.8 ± 0.3
5	d)	-	-	50	10	41.7	35.6 ± 0.2
6	11.5	50	5	50	8	1.2	77.3 ± 8.3
7	11.5	r.t.	3	r.t.	28	12.6	20.2 ± 0.9
8	11.5	80	1.7	80	6	71.4	49.2 ± 0.2
9	11.5	80	1.7	120	2	100.0	40.3 ± 0.1
10	11.5	120	1.7	120	2	100.0	48.8 ± 0.2

Table. Hydrogenation of 2-phenyl-1-butene with Rh-III complex catalyst^{a)}

- a) 2-Pheny1-1-butene: 1.5 ml, P_{H_2} : 50 atm, $[Rh(1,5-hexadiene)C1]_2$: 7.5 x 10^{-6} mol, Solvent: benzene 10 ml (run $1 \sim 5$) or benzene 5 ml + ethanol 5 ml (run $6 \sim 10$).
- b) Atomic ratio of phosphorus to rhodium. c) Optically pure (R)-2-phenylbutane shows $[\alpha]_D^{20} = -27.31^{\circ}.^{5)}$ d) Rum 4 and 5 were carried out using the catalyst recovered from rum 3 and 4, respectively.

mixture containing suspended gelatinous catalyst was poured into methanol (100 ml), the catalyst precipitated was removed by filtration, and the product, 2-phenylbutane, was distilled.

The results of hydrogenation are listed in Table. In all cases the prevailing configuration of the product was R. When the value of P/Rh was enough high, high optical yields were obtained in the hydrogenation of 2-phenyl-1-butene in benzene. In a benzene-ethanol (1:1) mixed solvent, the optical yield observed was as high as 77%, though the hydrogenation proceeded very slowly probably because of the insolubility of the catalyst. Elevation of the complexation temperature or lowering of the reaction temperature tended to give a higher optical yield. Experiments for comparison by use of [], or (-)-2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane (DIOP) under the same reaction conditions gave (R)-2-phenylbutane in 33.0 or 24.5% enantiomeric excess, respectively.

The results of the reaction using the recovered catalyst (run 4 and 5) show that the stereoselectivity was lost to some extent even if all operations of the recovery were carried out under nitrogen atmosphere.

Asymmetric hydrogenation of α -acetoamidocinnamic acid by use of the catalyst system (P/Rh=11.5) at 50°C in benzene-ethanol (1:1) mixed solvent gave after seven days N-acetylphenylalanine in 52 and 17.5% optical and chemical yield, respectively.

References

- 1) Z. M. Michalska and D. E. Webster, Chem. Technol., 1975, 117.
- 2a) W. Dumont, J. Poulin, T. Dang, and H. B. Kagan, J. Am. Chem. Soc., 95, 8295 (1973).
- 2b) H. Pracejus and M. Bursian, German (East) Patent 92031 (1972); Chem. Abstr., 78, 72591b (1973).
- 3) M. Tanaka and I. Ogata, J. Chem. Soc., Chem. Commun. 1975, 735.
- 4) J. W. Green, "Methods in Carbohydrate Chemistry", Vol. 3, ed. by R. L. Whistler, Academic Press, New York-London (1963), pp. 327-331.
- 5) P. W. B. Harrison, J. Kenyon, and J. R. Shepherd, J. Chem. Soc., 1926, 658.